

Synthesis and Biological Effects of Hydrogen Sulfide (H₂S): Development of H₂S-Releasing Drugs as Pharmaceuticals

Giuseppe Caliendo,*,† Giuseppe Cirino,‡ Vincenzo Santagada,† and John L. Wallace§

†Dipartimento di Chimica Farmaceutica e Tossicologica, and [‡]Dipartimento di Farmacologia Sperimentale. Università degli Studi di Napoli Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy, and §Farncombe Family Digestive Health Research Institute, McMaster University, 1200 Main Street West, Room HSC-3N9, Hamilton, Ontario, L8N 3Z5, Canada

Received November 5, 2009

Introduction

Gaseous transmitters are a growing family of regulatory molecules involved in multilevel regulation of physiological and pathological functions in mammalian tissues. 1 Hydrogen sulfide (H₂S^a) is best known for its characteristic smell of rotten eggs. It is now widely recognized that H₂S, along with nitric oxide (NO) and carbon monoxide (CO), is involved in a multitude of physiological functions.² The generation of H₂S by mammalian tissues is likely to occur in a slow and constant rate, and it appears to be involved in several processes including neuromodulation, 3 hypertension, 4 inflammation, 5,6 edema, 7 hemorrhagic shock, ⁸ pain perception, ⁹ gastric mucosal integrity, 10 and vascular tone.

This Perspective has been designed in order to give to the reader an updated overview on the physiology and biochemistry of H₂S. In particular we have summarized the effects of H₂S inhibitors and H₂S donors in animal models of disease ordered for apparatus. Finally there is a section that addresses the potential for therapeutic exploitation of H₂S and provides an update on the patents so far filed.

Hydrogen Sulfide (H₂S): Chemistry and Metabolic Pathways

H₂S is a gas with a structure is very similar to that of water, but this is where the similarity ends (Figure 1). The sulfur atom is not nearly as electronegative as oxygen so that hydrogen sulfide is much less polar than water. Because of this, comparatively weak intermolecular forces exist for H₂S and the melting and boiling points are much lower than they are in water. The boiling temperatures of hydrogen sulfide and water are -60.7 and +100.0 °C, respectively.

Hydrogen sulfide is weakly acidic, dissociating in aqueous solution into hydrogen cation (H⁺) and hydrosulfide anion (HS⁻), which subsequently may decompose to H⁺ and sulfide

ion (S²⁻) ($K_{a1} = 1.3 \times 10^{-7} \,\text{M}$, $K_{a2} = 1 \times 10^{-19} \,\text{M}$ (Scheme 1). 11–13 Under physiological conditions, i.e., at pH 7.4, one-third of hydrogen sulfide is undissociated and present in biological fluids as H_2S . Conversely, the chemical form S^{2-} is not present in appreciable amounts, since the dissociation of HS⁻ occurs only at high pH values.

Hydrogen sulfide is rapidly oxidized, mainly in mitochondria, initially to thiosulfate and subsequently to sulfite and sulfate. This oxidation is not enzymatically driven, while thiosulfate conversion to sulfate and/or sulfite is catalyzed by thiosulfate cyanide sulfurtransferase (TST).

Also, sulfite originating through this reaction is quickly oxidized to sulfate, as sulfate is the major end-product of H₂S metabolism under physiological conditions; however, urinary thiosulfate is considered to be a nonspecific marker of wholebody H₂S production.¹⁴

Another catabolic pathway is represented by methylation by thiol-S-methyltransferase (TSMT) to methanethiol and dimethyl sulfide. This reaction occurs mainly in cytosol, and some studies have questioned the significance of this pathway in the gastrointestinal tract. ^{15,16} Methemoglobin, considered a "common sink" for endogenous gases including CO and NO, also binds H₂S as sulfhemoglobin (Scheme 2).¹

Toxic effects of hydrogen sulfide in humans (at concentrations of < 100 ppm) include eye irritation, sore throat, dizziness, nausea, shortness of breath, and chest tightness. 18,19 Exposure to hydrogen sulfide at > 1000 ppm may cause severe adverse effects, especially for the central nervous system (CNS) and respiratory depression, ranging from loss of consciousness to death.²⁰ The primary cause of death from H₂S poisoning has been attributed to respiratory paralysis. 18 In addition, pulmonary edema has consistently been reported as the single most notable lesion in autopsies of individuals killed by H₂S poisoning.²¹ At present, although the mechanism of action for these toxic effects is not clear, it is widely believed that H₂S targets mitochondria at low micromolar concentrations via reversible inhibition of cytochrome c oxidase. 19 Measurement of the concentration of thiosulfate in blood and urine is useful for determining hydrogen sulfide poisoning.²²

In mammals, H₂S is endogenously produced by enzymatic reactions, even if some nonenzymatic pathways are involved in the biochemistry of hydrogen sulfide. H₂S is present in micromolar concentrations in blood²³ and can be synthesized from L-cysteine primarily via two enzymes: cystathionine-γ-lyase (CSE) and cystathionine- β -synthetase (CBS).²⁴ L-Cysteine is a sulfur-containing amino acid derived from alimentary

^{*}To whom correspondence should be addressed. Phone: +39081678649. Fax: +39081678649. E-mail: caliendo@unina.it.

^a Abbreviations: AdoMet, S-adenosyl-L-methionine; BCA, β-cyanoalanine; CBS, cystathionine- β -synthetase; CD, Crohn's disease; CLP, cecal ligation puncture; CNS, central nervous system; CO, carbon monoxide; CRD, colorectal distension; CSE, cystathionine-γ-lyase; CTH, cystathionase; Hcy, homocysteine; H2S, hydrogen sulfide; IBD, inflammatory bowel disease; IL, interleukin; LPS, lipopolysaccharide; LTP, long-term potentiation; MAPK, mitogen-activated protein kinase; NO, nitric oxide; PAG, propargylglycine; PDE5, phosphodiesterase-5; PKA, protein kinase A; PLP, pyridoxal 5'-phosphate; SP, substance P; TNF-α, tumor necrosis factor α; TSMT, thiol-S-methyltransferase; TST, thiosulfate cyanide sulfurtransferase; UC, ulcerative cholitis; ZDF, Zucker diabetic fatty.

sources, synthesized from L-methionine through the so-called "trans-sulfuration pathway" with homocysteine (Hcy) as an intermediate or liberated from endogenous protein (Scheme 3). 25,26

Another pathway that leads to the release of H_2S is represented by a "desulfhydration" reaction, consisting of the removal of the cysteine sulfur atom without its oxidation. This process may be catalyzed by both trans-sulfuration pathway enzymes, CBS and CSE. On the other hand, the H_2S catabolic pathway is not well-defined yet, and most of the data have been obtained by using exogenous H_2S .

Figure 1. Similarity in molecular structure between water (H_2O) and hydrogen sulfide (H_2S) .

Scheme 1. Hydrogen Sulfide Dissociation
$$Ka_1$$
 H_2S H^+ + $HS^ H^+$ + S^2

Scheme 2. Catabolism of H_2S^a

a)
$$2 \text{ HS}^- + 2 \text{ O}_2 \longrightarrow \text{S}_2 \text{O}_3^{2-} + \text{H}_2 \text{O}$$

thiosulfate

$$S_2O_3^{2-} + CN^- \xrightarrow{TST} SCN^- + SO_3^{2-}$$
thiocyanate sulfite
$$H_2S \xrightarrow{TSMT} CH_3SH \xrightarrow{TSMT} CH_3-S-CH_3$$
methanethiol dimethylsulfide (DMS)

c) H₂S + methemoglobin
→ sulfhemoglobin

^a(a) mitochondrial oxidation; (b) cytosolic methylation; (c) binding to hemoglobin. SO: sulfite oxidase. TSMT: thiol-S-thiomethyl transferase. TST: thiosulfate cyanide sulfur transferase (rhodanese).

Scheme 3. Endogenous Hydrogen Sulfide Synthesizing Pathways^a

CBS and CSE are responsible for the majority of the endogenous production of H₂S in mammalian tissues and have been detected in human and other mammalian cells.²⁷ Their expression is thought to be tissue-specific.²³ Indeed, CBS is expressed in hippocampus, cerebellum, cerebral cortex, and brainstem, and its activity is 30-fold greater than CSE.²⁸ On the other hand, CSE expression and activity have been shown to be higher than CBS in aorta, mesenteric artery, portal vein, and other vascular tissue. ^{23,29} In some tissues, CSE and CBS are both required for H₂S synthesis, whereas in others only one of these enzymes is necessary. CSE appears to be the predominant enzymatic source of H2S in the vasculature and heart, while in the central nervous system (CNS) CBS predominates. As reported above, H₂S formation is related to the activity of both CBS and CSE, which are pyridoxal 5'-phosphate (PLP) dependent enzymes that differ in their specific mechanism (Scheme 3).

CSE, also known as cystathionase (CTH), is mainly able to convert cystathionine to cysteine by catalyzing the elimination reactions of L-homoserine to form H₂O, NH₃, and 2-oxobutanoate, of L-cystine to produce thiocysteine, pyruvate, and NH₃, and of L-cysteine to produce pyruvate, NH₃, and H₂S.³¹ CSE is a protein of 405aa and is a tetramer formed by two homodimers, both contributing to the active site pocket. On the other hand, CBS is a cystathionine-forming enzyme even if, in general, it catalyzes β -replacement reactions between L-serine, L-cysteine, cysteine thioethers, or some other β -substituted α -L-amino acids, and a variety of mercaptans. $^{32-34}$ In cases in which the condensation reaction involves cysteine and homocysteine, the final products will be H₂S and cystathionine. Recently Qingxiang et al. reported the crystal structures of human CSE (hCSE), in apo form and in complex with PLP and PLP-DL-propargylglycine (PAG).³⁵ Structural characterization and biophysical and biochemical studies provide new insights into the inhibition mechanism of hCSE-mediated production of H₂S. Transition from the open form of apohCSE to the closed PLP-bound form reveals large conformational changes hitherto not reported. In addition, PAG binds hCSE via a unique binding mode not previously observed in PAG-enzyme complexes. The interaction of PAG-hCSE was not predicted based on existing information from known PAG complexes. The structure of hCSE.PLP-PAG complex

[&]quot;Homocysteine is the physiological substrate for CBS that in the presence of cysteine releases both H_2S and cystathionine. Cystine and cystathionine are both substrates for CSE, which is able to produce both cysteine and thiocysteine. The latter can release H_2S in a nonenzymatic manner.

highlights the particular importance of Tyr₁₁₄ in hCSE and the mechanism of PAG-dependent inhibition of hCSE. These results provided significant insights, which will facilitate the structure-based design of novel inhibitors of hCSE to aid in the development of therapies for diseases involving disorders of sulfur metabolism.

CBS (cystathionine β -synthase) domains are small protein motifs, usually associated in tandem, that are involved in binding to adenosyl groups. 36,37 Human CBS is a homotetramer consisting of 63 kDa subunits which bind two cofactors, pyridoxal 5'-phosphate (PLP) and heme. Each CBS subunit of 551 amino acid residues binds two substrates (homocysteine and serine) and is further regulated by S-adenosyl-L-methionine (AdoMet).³⁷ While the role of heme in CBS activity is unknown, catalysis by CBS can be explained solely by participation of PLP in the reaction mechanism.³⁸ In humans, several genetic diseases have been associated with mutations in CBS domains, and they can be considered as promising targets for the rational design of new drugs. Recently, Lucas et al. reported the purification, crystallization, and preliminary X-ray diffraction analysis of the CBS-domain pair from the Methanococcus jannaschii protein MJ0100.³⁹ CBS domains consist of a three-stranded β -sheet and two α-helices that are present in proteins of all kingdoms of life and in proteins with completely different functions. The C-terminal domain of the Methanococcus jannaschii protein MJ0100 includes a CBS-domain pair and has been overexpressed, purified, and crystallized. Preliminary analysis of the X-ray data indicated that there were eight molecules per asymmetric unit in both cases. Successively Martinez-Cruz et al. 40 explored in this study the oligomerization state, the stability, and conformational properties of the CBS domain protein MJ0729 from Methanocaldococcus jannaschii by using a combination of hydrodynamic (namely, ultracentrifugation, DLS, DOSY-NMR, and gel filtration) and spectroscopic

Figure 2. Structures of PAG and BCA.

techniques (fluorescence, CD, NMR, and FTIR). The results indicated that the protein had a pH-dependent oligomerization equilibrium; at pH 7, the dominant species is a dimer, where each monomer is a two-CBS domain protein, and at pH 4.5-4.8, the dominant species is a tetramer with an oblong shape, as shown by X-ray. Deconvolution of the FTIR spectra indicated that the monomer at physiology pH has 26% α -helical structure and 17% β -sheet, with most of the structure disordered.

Recently it has been proposed that H₂S can signal through protein S-sulfhydration. S-Sulfhydration affects cysteines in target proteins, yielding an -SSH moiety that has enhanced chemical reactivity.41

Biological Activity

There are several pathological and physiological conditions in which H₂S appears to be involved. All the papers published thus far have dealt with this research topic by either using an exogenous source of H₂S or using inhibitors of H₂S synthesis acting either on CBS or on CSE. Pharmacological inhibitors of H₂S biosynthesis include DL-propargylglycine (PAG) and β -cyanoalanine (BCA) (Figure 2).

Although characterized by low potency, poor selectivity, and limited cell-membrane permeability, these compounds have been used in several studies in order to verify the effects of inhibition of H₂S production. They are nonspecific and are likely to interact with other pyridoxal phosphate dependent enzymes. Another important issue to be pointed out is that while deletion of the CBS gene leads to mice with retarded growth that die within 3 weeks, knockout of CSE generates viable mice that display a reduced vascular response.

For brevity, in the following paragraphs summarize the effect of H₂S in different systems and literature relevant data are reported in Tables 1-5.

H₂S and Cardiovascular System

Hydrogen sulfide activity in the cardiovascular system has been investigated in several species. The role of H₂S has been investigated by using mainly two approaches: (i) by inhibiting endogenous H₂S; (ii) by administering exogenous H₂S mainly using NaHS as donor. On the basis of these studies, a role for H₂S in modulating vascular tone has emerged. For brevity, Table 1 summarizes the main effects displayed by H₂S in the cardiovascular system.

Table 1.	Effects and	Role of H ₂ S in	the Cardiovascular System	
----------	-------------	-----------------------------	---------------------------	--

species	tissues	effect in vitro	effect in vivo	effect of inhibitor	ref
rat	mesenteric artery, aorta portal vein	relaxation	hypotensive	K _{ATP} channel blocker inhibits, PAG and BCA block relaxation	23, 42-45
hypertensive rat	aorta, plasma, thoracic aorta	relaxation, regulation of excess vascular collage	reduces blood pressure	the effect was reduced by PAG	4, 46, 47
rat	liver, ileum		increases systolic blood pressure (PAG)	amino oxyacetate, PAG inhibit H ₂ S production	48
human	internal thoracic artery	relaxation, contraction (low dose)		K _{ATP} channel blocker inhibits	49
mouse lacking CSE	serum, heart, aorta	reduced H ₂ S levels, reduced vasorelaxation	hypertension	not tested	50
rat	plasma myocardium	reduced lipid peroxidation, increased antioxidation, inhibition oxidative stress injury	improves cardiac function	not tested	51
rat	pulmonary artery	effect on pulmonary collagen remodeling		PAG in vivo in a model of pulmonary high flow	52

species	tissues/cells	effect in vitro	effect in vivo	effect of inhibitor/mediator involvement	ref
monse	lung liver		Proinflammatory Effects for H ₂ S proinflammatory in septic shock cecal ligation and puncture (CLP)induced sepsis	PAG reduced lung and liver myeloperoxidase activity. PAG reduced leukocyte rolling and adherence significantly in mesenteric venules coupled with decreased mRNA and protein levels of adhesion molecules in lung and liver.	56, 57
guinea pig	airways	tachykinin-mediated neurogenic inflammatory responses in oninea nio airwave	intratracheal instillation of NaHS increased the total lung resistance and airway plasma profein extravasation	Capsazepine and SR140333 or SR48968 inhibit NaHS effect.	58
mouse	lung		H ₂ S involvement in the generation of substance P (SP) via NK-1 receptor	PAG pretreatment or post-treatment significantly decreased the production of SP in lung.	59
mouse	pancreas		H ₂ S mediates pancreatitis induced by caerulein hyperstimulation	PAG treatment reduced pancreatic and lung edema, diminished acinar-cell injury/necrosis.	9
rat, mouse			H ₂ S proinflammatory: paw edema, hemorrhagic shock	Pretreatment with PAG significantly reduces proinflammatory effects.	7, 8, 60–62
human	IFN γ -primed human U937	$\mathrm{H}_2\mathrm{S}$ is proinflammatory)	proinflammatory cytokines, Involvement ERK-NF-kB pathway	63
rat			nociceptive in formalin assay	PAG attenuated both nociceptive flinching and hind paw edema.	49
rat	mesenteric venules		Anti-Inflammatory Effects of H ₂ S leukocyte adherence in mesenteric venules, leucocyte infiltration in the air pouch carrageenan-induced hindpaw edema	activation of ATP-sensitive K^+ ($\mathrm{K}_{\mathrm{ATP}}$) channels	92
mouse	caerulein-treated acinar cells	H ₂ S inhibits the production of proinflammatory cytokines by activation of the (PI3K)/AKT pathway		PI3K inhibitor in LY294002 abolished the H_2S -mediated activation of AKT and increases TNF- α and IL-1 β levels	99
mouse	lung	•	H ₂ S exerts protective effects	activation of anti-inflammatory	29
rat	stomach		In active tung injury H_2S promotes GI healing in the rat.	and andomidant pathways	65, 68
mouse	LPS-stimulated microglia and astrocytes		$\rm H_2S$ produced an antiinflammatory effect.	inhibition of inducible nitric oxide synthase and p38 MAPK signaling pathways	69
rat	lung		H_2S attenuates the development of pulmonary hypertension.	elevating $I_{\kappa}B_{\alpha}$ expression, down-regulating NF- κB p65 expression	70
rat macrophages	myocardium RAW2647	LPS-stimulated	cardioprotective effect of NaHS anti-inflammatory	antiapoptotic and anti-inflammatory effects H ₂ S can inhibit NO production and NF-κB activation. BCA enhanced NO production.	71 72
Yorkshire swine	myocardium		protection in response to ischemia—reperfusion injury	Therapeutic sulfide reduces tissue levels of IL-6, IL-8, TNF- α , and MPO activity.	73
rat	colon		Inhibition of H ₂ S synthesis in rats resulted in inflammation and mucosal injury.	Intracolonic administration of H ₂ S donors reduced the severity of colitis and reduced colonic expression of mRNA for TNF-α	74

Table 3. Effects of H₂S in the Nervous System Central in Processes of Animal Models of Disease

species and tissues	effect in vitro or in vivo and effect of inhibitor	ref
rat, brain	NaHS down-regulated the expression of c-fos and increased the expression of γ -aminobutyric acid B receptor subunits 1 and 2 (GABA _(B) R2) in recurrent febrile seizures. Hydroxylamine (an inhibitor of CBS) up-regulates c-fos and down-regulates GABA(B)R2.	80
rat, primary hepatocyte	H ₂ S protects neurons from oxidative stress rat primary hepatocytes.	81
human, cultured human SH-SY5Y cells	H ₂ S inhibits HOCl-mediated inactivation of α(1)-antiproteinase and protein oxidation, HOCl-induced cytotoxicity, intracellular protein oxidation, and lipid peroxidation.	82
mouse, hippocampal cell line	H ₂ S protects from oxidative glutamate toxicity through ATP-dependent K ⁺ and Cl [−] channels and increases glutathione levels.	83
mouse, brain endothelial cells (bEnd3)	H ₂ S protects from oxidative stress induced by hyperhomocysteinemia.	84
glia cells	H ₂ S has a protective effect on oxidative stress on brain endothelial cells.	85-87
rat, primary cultures of astrocytes and hippocampal slices	H ₂ S increases the influx of Ca ²⁺ and causes the release of stored intracellular Ca ²⁺ , La ³⁺ , and Gd ³⁺ . Inhibitors of Ca ²⁺ channels block Ca ²⁺ waves induced by neuronal excitation or from exogenously applied H ₂ S.	88
rat, primary cultured microglial cells	Hydrogen sulfide regulates calcium homeostasis in microglial cells. PAG and BCA significantly decrease $[Ca^{2+}]_i$.	89
mouse, primary cultured microglia and immortalized murine BV-2 microglial cells	Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase (MAPK) in microglia.	69

Table 4. Effects of H₂S in the Endocrine System in Processes of Animal Models of Disease

species and tissues	effect in vitro or in vivo and effect of inhibitor	ref
	H ₂ S Role on Insulin Metabolism	
Zucker diabetic fatty (ZDF) rats, pancreatic β -cells	H_2S significantly increases K_{ATP} channel activity rat pancreatic β -cells. Insulin release is impaired in ZDF by a high pancreatic production of H_2S . PAG increased serum insulin level, lowered hyperglycemia, and reduced hemoglobin A1c level.	90
mouse, mouse pancreas	High glucose increased CSE expression in β -cells. L-Cys or NaHS suppressed islet cell apoptosis with high glucose and increased glutathione content in MIN6 β -cells. The CSE inhibitor PAG antagonized L-cysteine effects.	91
rat, INS1-E cells derived from a rat insulinoma	${ m H}_2{ m S}$ at physiologically relevant concentrations induced apoptosis of insulin-secreting eta cells by enhancing ER stress via p38 MAPK activation.	92
	H ₂ S Role on Catecolamine System	
rainbow trout; chromaffin cells (posterior cardinal vein and anterior kidney)	H ₂ S elicits catecholamine secretion via membrane depolarization followed by Ca ²⁺ -mediated exocytosis. H ₂ S-induced catecholamine secretion is unaltered by the nicotinic receptor blocker hexamethonium.	93
	H ₂ S Role on Hypothalamo—Pituitary	
rat, hippocampus	NaHS caused a concentration-dependent decrease in KCl stimulated corticotropin-releasing hormone release. S-Adenosylmethionine mimics the effects of NaHS but did not affect hypothalamo—pituitary—adrenal function under resting conditions while inhibiting stress-related glucocorticoid increase.	94

H₂S and Inflammation

Recently, many studies and reviews⁵³⁻⁵⁵ were published on the involvement of hydrogen sulfide in inflammatory events. Evidence has been shown for a pro- or anti-inflammatory role of H₂S. In Table 2 is reported a summary of the evidence for the role of H_2S in inflammation.

H₂S and Central Nervous System

The possible role of hydrogen sulfide as an endogenous neuromodulator and an intracellular messenger was reported by Abe et al. 75 In the mammalian CNS, H₂S is present at relatively high levels in the brain, and CBS, which is highly expressed in the hippocampus, is involved in the production of brain H₂S. As CBS is a calcium- and calmodulin-dependent enzyme, the biosynthesis of H₂S should be acutely controlled by the intracellular concentration of calcium. In addition, it is also regulated by S-adenosylmethionine which acts as an allosteric activator of CBS.

Physiological concentrations of H₂S selectively enhance NMDA receptor-mediated currents and facilitate the induction of hippocampal long-term potentiation (LTP). The NMDA receptor subunits are directly phosphorylated at specific sites by protein kinase A (PKA), resulting in the activation of NMDAreceptor-mediated excitatory postsynaptic currents. PKA activation is also observed in the induction of LTP. Kimura showed that the physiological concentrations of H₂S increase the production of cAMP in primary cultures of brain cells, neuronal and glial cell lines, and Xenopus oocytes.⁷⁶ NMDA receptors expressed on Xenopus oocyte membrane are modulated by H2S. This modulation by H₂S is specifically inhibited by adenylyl cyclase-specific inhibitor MDL-12, 330A. ⁷⁶ H₂S is also involved in CNS pathologies such as stroke⁷⁷ and Alzheimer's⁷⁸ disease. In stroke, H₂S appears to act as a mediator of ischemic injuries, and thus, inhibition of its production has been suggested to be a potential treatment approach in stroke therapy.

On the basis of the known actions of H₂S described above, the potential physiological functions of H₂S in the brain may

Table 5. Effects of H₂S in the Gastrointestinal System in Processes of Animal Models of Disease

species and tissues	effect in vitro or in vivo and effect of inhibitor	ref
mouse, human, rat; Jejunum,	H ₂ S inhibits in vitro intestinal and colonic motor patterns. This effect is dependent	97
colon, muscular strips	on SK channels and glybenclamide-sensitive $K_{(ATP)}$ channels.	
mouse, small intestine	H ₂ S prevents in ischemia—reperfusion, leukocyte rolling, and leukocyte adhesion	98
	through an eNOS- and p38 MAPK-dependent mechanism.	
mouse, intestine	Intraperitoneal injections of lysine acetyl salicylate increased concentration of	99
	endogenous hydrogen sulfide	
rat, liver	In normal hyperhomocysteinemic and cirrhotic rat livers, endothelial dysfunction caused	100
	by homocysteine was reversed by perfusion of the livers with sodium sulfide.	
mouse, liver	H ₂ S protects the murine liver against ischemia-reperfusion injury through an up-regulation	101
	of intracellular antioxidant and antiapoptotic signaling pathways.	
mouse, cecal ligation and	Inhibition of H ₂ S formation by PAG significantly reduced the phosphorylation of ERK1/2	102
puncture (CLP) induced sepsis	in lung and liver 4 h after CLP, coupled with decreased degradation of $I_{\kappa}B_{\alpha}$	
	and activation of NF-κB.	
rat, hepatic arteria	CSE-derived H ₂ S contributes to hepatic arterial buffer response and partly mediates	103
	vasorelaxation of the hepatic artery via activation of K _(ATP) channels. PAG	
	significantly reduced the buffer capacity.	
human, erythrocytes and	No evidence of defective enzymic detoxication of sulfide by <i>Rhodanese</i> or thiol	104
colonic mucosa	methyltransferase was found in patients with ulcerative colitis or Crohn's disease.	
mouse, colon	H ₂ S-releasing mesalamine derivative, ATB-429, reduces colitis-associated leukocyte	105
	infiltration and expression of several proinflammatory cytokines.	
mouse, pancreatic acini	The proinflammatory effect of H ₂ S may be mediated by substance P neurokinin-1	106
	receptor (SP-NK-1R) related pathway in mouse pancreatic acinar cells.	
mouse, cecal ligation and	H ₂ S acts as an important endogenous regulator of leukocyte activation and trafficking during	57
puncture induced sepsis	an inflammatory response (in cecal ligation and puncture-induced sepsis).	
rat, gastric mucosal epithelial cells	NaHS/H ₂ S protects gastric mucosal epithelial cells against oxidative stress through stimulation of MAP kinase pathways.	107
rat, colorectal distension (CRD)	ATB-429, a novel H ₂ S-releasing derivative of mesalamine, inhibits hypersensitivity induced by	108
	CRD in both healthy and postcolitic allodynic rats by a $K_{(ATP)}$ channel-mediated mechanism.	
rat and mouse, pancreas	NaHS/H ₂ S targets T-type Ca ²⁺ channels, leading to nociception. Endogenous H ₂ S produced	109
	by CSE and possibly T-type Ca ²⁺ channels are involved in pancreatitis-related pain.	
rat and mouse,	The capacity for H ₂ S synthesis varies throughout the rodent gastrointestinal tract,	110
gastrointestinal tract	as does the distribution and contribution of the two key enzymes (CSB and CSE).	
guinea pig, gastric	H ₂ S has multiple actions during the regulation of gastric motility in the guinea pig.	111
antrum muscle strips	An excitatory effect is mediated via inhibition of the voltage-gated K ⁺ channel,	
	and an inhibitory effect is mediated via activation of the $K_{(ATP)}$ channel.	
rat	H ₂ S synthesis is markedly up-regulated during experimental colitis. Inhibition of H ₂ S synthesis	74
	interfered with resolution/healing of the colitis, while administration of H ₂ S donors	
	accelerated resolution/healing.	

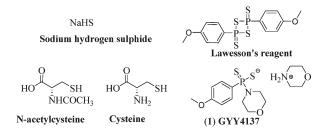


Figure 3. Structures of H₂S donors used for basic research.

include calcium homeostasis, potentiation of LTP, suppression of oxidative stress, and modulation of neurotransmission. ⁷⁹ In Table 3 is summarized the main evidence for the role of H_2S in CNS.

H₂S and the Endocrine System

The potential roles of H_2S in regulating endocrine function have also been recently investigated. Table 4 is a summary of the evidence for the role of H_2S in insulin metabolism and in catecolamine and hypothalamo-pituitary endocrine system.

H₂S and the Gastrointestinal System^{95b,c,96}

Studies of H_2S -induced chloride secretion in guinea pig and human colon imply that the presence of H_2S in the mucosa/submucosa of the colon stimulates primary afferent nerve

fibers, which leads to increased chloride secretion. With this reasoning, it might also be possible that H₂S affects contractile function not only by direct effects on the smooth muscle itself but by an effect on neurons of the enteric nervous system that might, in turn, affect smooth muscle function. Another potential source of H₂S, besides the neuronal endogenous production, might be H₂S produced by bacteria within the bowel lumen; however, a physiologic role of H₂S originating from this source has not yet been described. The pathways that appear to modulate the contractile function of the gastrointestinal (GI) tract by H₂S have not yet been studied and serve as fertile territory for future experiments.

In addition to the effect of H_2S as a gasotransmitter affecting GI contractile activity, H_2S may play a role as a proinflammatory mediator in abdominal sepsis, endotoxemia, and pancreatitis in contrast to its anti-inflammatory effects in animal models of gastritis and colitis. Furthermore, H_2S has an antinociceptive effect on visceral pain perception, but H_2S has also been demonstrated to activate primary sensory neurons. Some of the major findings on the role of H_2S in the GI tract are reported in Table 5.

H₂S-Related Compounds in Development

In Figure 3 are reported the structures of H₂S donors used for basic research, and in Figure 4 are reported drug candidates in

Figure 4. Structures of H₂S-releasing agents and their parent drugs (sildenafil, mesalamine, naproxen, indomethacin, diclofenac) reported in the literature as drug candidates in development.

Scheme 4. Hypothesis of Chemical Transformation of the H₂S Releasing Moieties

a) Thioacetamide hydrolysis

$$\begin{array}{c|c} S & D & O \\ \hline NH_2 & H^+ \\ pH & 0-2 \end{array}$$

b) 4-Hydroxybenzothioamide (TBZ) hydrolysis

HO
$$\stackrel{S}{\longrightarrow} \stackrel{H_2O}{\longrightarrow} HO \stackrel{O}{\longrightarrow} H_2S$$
4-hydroxybenzothioamide 4-hydroxybenzamide

c) 5-(4-hydroxyphenyl)-3*H*-1,2-dithiole-3-thione (ADT-OH) hydrolysis

development. Among them, there are agents that either directly release H₂S when in solution (NaHS, Na₂S, *Lawesson's* reagent, GYY4137¹¹²) or function as a precursor for endogenous H₂S synthesis (*N*-acetylcysteine, ⁶⁵ L-cysteine).

Pharmacologically useful donors should be soluble in aqueous media, should not be not toxic, should not metabolize quickly, and should release H_2S in vivo slowly over a period of time. The most widely used tool to generate H_2S is

NaHS^{2,53-55,68,113} Sodium hydrogen sulfide (NaHS) is a known donor, but it releases H_2S too quickly and is not useful for many studies. A large release of H_2S causes the blood pressure to fall rapidly and may have detrimental effects on the patient or animal. The effects from the release of H_2S also will be fairly short-lived. Some papers have shown that Lawesson's reagent is a H_2S releasing compound. In a smaller number of papers, Na₂S has been used, which is also currently under development by Ikaria (see below). More recently, a water-soluble compound GYY4137 has been synthesized that is a slow-releasing H_2S compound with vasodilatator and antihypertensive activity. 112

One of the major issues in this field is the rate of hydrolysis of H_2S donors. In other words it is critical for research in this field to have tools that are clearly defined. In Scheme 4 we have reported hypothetic hydrolysis mechanisms of some H_2S donors obtained by comparison with some analogue structures reported in the literature. $^{114-116}$

Hydrolysis mechanism of TBZ could be similar to that of thioacetamide. 114 Moreover, TBZ is more prone to undergo this conversion because of the presence of an aromatic ring that makes the formed intermediates more stable than that of thioacetamide. Concerning ADT-OH, it has been reported that trithiones can be converted to the corresponding dithiolone by means of oxidant reagents such as ${\rm Hg}({\rm OAc})_2$ and ${\rm KMnO_4}.^{115,116}$ In addition we could also consider the oxidative desulfurization of thiobarbiturates performed by CYP450. 117 However,

H₂S-related pharmacological research is a rapidly emerging field, which is likely to yield a number of therapeutic possibilities, and early stage drug candidates are now in development.

Ikaria is investigating the impact of the sulfide ion, administered as sodium sulfide (IK-1001), 118,119 in a number of disease models. Preclinical data demonstrate the therapeutic potential of Na₂S for injection, a parenteral injectable formulation of hydrogen sulfide, in a variety of disease models including myocardial infarction, cardiopulmonary bypass surgery, thoracoabdominal aortic aneurysm surgery, liver ischemia and reperfusion, organ storage and transplantation, and acute lung injury. 118,119

Another main line of research deals with the synthesis of known chemical entities bearing in their structure a moiety that releases hydrogen sulfide. A H₂S donating derivative of sildenafil, namely, ACS6 (CTG-Pharma, **2**, Figure 4), relaxed cavernosal smooth muscle equipotently to sildenafil citrate. The formation of superoxide and expression of p47 and PDE5 were reduced by **2**, sildenafil citrate, and NaHS. Compound **2** was more active than sildenafil. Recently it has been shown that the H₂S pathway is involved in the erectile function in humans.

Another line of research that is producing new molecules and exploiting the H₂S concept is aimed at reducing the toxicity of nonsteroidal anti-inflammatory drugs (NSAIDs). H₂S donors were shown to reduce the severity of NSAID-induced damage in the rat stomach. ¹²¹ Moreover, NSAIDs decreased endogenous H₂S synthesis. ¹²² Antibe Therapeutics has produced an interesting chemical entity, ATB 337 (6, Figure 4), a derivative of diclofenac, that exhibits enhanced anti-inflammatory effects to the parent drug.⁵⁴ The same compound, ACS15 (6, Figure 4), has been been synthesized and tested by CTG Pharma. 123 While diclofenac dose-dependently damages the stomach, **6** displays significantly reduced GI toxicity and has no effect on hematocrit. ^{95a,124} Diclofenac, but not **6**, elevates gastric granulocyte infiltration and expression of TNF-α, lymphocyte function-associated antigen 1, and intercellular adhesion molecule 1. Compound 6 inhibited COX-1 and COX-2 activity as effectively as diclofenac. Compound 6 did not induce leukocyte adherence, whereas diclofenac did and was more potent at reducing paw edema.

ATB-429^{105,108} (3, Figure 4) is a derivative of mesalamine, a drug commonly used in the treatment of inflammatory bowel disease (IBD). IBD is divided into two subtypes: Crohn's disease (CD) and ulcerative colitis (UC). Compound 3 has been widely characterized in animal models of CD and UC, and it has been shown to be significantly more effective than mesalamine. Moreover, there is also considerable preclinical evidence that 3 is significantly more effective in treating the visceral pain associated with IBD. 105,108

ATB-346¹²⁵ (4, Figure 4) is a derivative of naproxen, the latter being a drug that is widely used as pain relief in osteoarthritis, the most common form of arthritis. However, like other NSAIDS, naproxen carries a significant risk of serious gastrointestinal bleeding and cardiovascular effects (e.g., heart attacks, elevated blood pressure). In preclinical studies, 4 exhibits increased effectiveness over its parent drug and a remarkable reduction in the gastrointestinal and cardiovascular toxicity. The drug at the present stage is in preclinical effectiveness and toxicology studies. 125

Conclusions and Future Directions

In this review we have made an effort to give an overview of the recent contributions to this research field. It is clear that the H₂S research field is growing rapidly, and considerable evidence is accumulating regarding the role of this mediator in different diseases. The data produced in the field can be divided into two main groups: (i) data obtained using an exogenous sources of H₂S and (ii) data obtained by modulating endogenous H₂S synthesis by using the substrate L-cysteine or inhibitors or CBS and/or CSE. In the majority of the studies published so far NaHS has been used as an exogenous source of H₂S and Na₂S to a lesser extent. In both cases the donors have been used in different micromolar ranges and in some cases very high concentrations (millimolar) have been used. In addition, at the present stage we do not know how much of the exogenous H₂S generated by NaHS or Na₂S actually reaches the cells, so it is not clear if the studies are examining physiological or pathological effects of this mediator. Does it matter if Na₂S is used instead of NaHS? Both salts generate a limited amount of H₂S, particularly when they are dissolved in buffers at a pH of \sim 7.4. Recently, in order to overcome this problem, medicinal chemists have started to synthesize organic donors aiming to produce drugs with a controlled H₂S release. Thus, in our view, the first important issue to be addressed by medicinal chemists is the synthesis and characterization of H₂S donors that release the gas with controlled kinetics at a defined pH. Indeed, synthesis of organic water-soluble H₂S donors, hopefully with controlled release, will contribute dramatically to the development of this field.

With respect to inhibitors of CBS and CSE, the available drugs lack selectivity, are not well characterized, and can be poorly soluble. These issues make the data presently available complex to interpret. Indeed, we do not know the relative selectivity of these inhibitors toward CSE or CBS in terms of IC₅₀ (i.e., studies performed using isolated enzyme systems). In addition, at least some of these inhibitors interact with other related enzymes. All these considerations indicate without a doubt that this research field opens an important opportunity for medicinal chemists to design and characterize selective inhibitors for CBS or CSE. The development of such agents, particularly if water-soluble, will allow researchers to modulate the endogenous physiological or pathological levels of H₂S. With these tools it will also be possible to evaluate the cross-talk of H₂S pathways with other relevant pathways (e.g., NO, COX, etc.). Therefore, the design, synthesis, and characterization of new H₂S donors and new selective inhibitors will enormously boost this research field. This field, even if relatively young, has already produced significant output in terms of numbers of patents filed. In conclusion, we believe that for researchers in medicinal chemistry this represents a challenging opportunity to contribute to the development of this exciting and promising new research field.

Biographies

Giuseppe Caliendo received his B.Sc. in Pharmacy from University of Naples Federico II, Italy, in 1981. Currently, he is Full Professor of Medicinal Chemistry at the Faculty of Pharmacy of Naples. He has published over 120 peer-reviewed papers and some scientific books in the field of peptidomimetics and synthesis by microwave of biologically active compounds. His research is focused on identification and characterization of pharmacologically active heterocyclic derivatives. In the recent years, he has been interested in the development of hybrid structures containing H₂S-releasing moiety in order to produce novel pharmacological tools able to highlight the therapeutic potential of modulation of the H₂S pathway.

Giuseppe Cirino received his degree in Pharmacy at the University of Naples Federico II, Italy, in 1980 and his Ph.D.

in Pharmacology in 1986. He is Full Professor of Pharmacology, has been Director of the Department of Experimental Pharmacology of the Faculty of Pharmacy, and at the present is Dean of the Faculty of Pharmacy. He has published over 180 peerreviewed articles and several book chapters in the field of inflammation. His major research interest is in cardiovascular, lung, and gut inflammation.

Vincenzo Santagada received his B.Sc. in Pharmacy from University of Naples Federico II, Italy, in 1982 and his Ph.D. in Medicinal Chemistry in 1987. Currently, he is Full Professor of Medicinal Chemistry at the Faculty of Pharmacy of Naples. He has published over 120 peer-reviewed papers and some scientific books in the field of peptidomimetics and synthesis by microwave. His scientific interests cover design and synthesis of pharmacologically active peptides and peptidomimetics that have been evaluated for their antitumoral, anti-inflammatory, antiviral, or analgesic properties. Recent years have seen a deep interest in the application of microwave technology to medicinal chemistry and in the development of H₂S-releasing molecules.

John L. Wallace received his B.Sc. and M.Sc. degrees in Biology from Queen's University, Canada, his Ph.D. from the University of Toronto, Canada, and an MBA from the University of Birmingham, U.K. He is presently the Director of the Farncombe Family Digestive Health Research Institute at McMaster University in Hamilton, Ontario, Canada. He has published over 350 peer-reviewed articles and over 80 book chapters. His major research interests are inflammation and ulceration in the gastrointestinal tract.

References

- (1) Wang, R. Two's company, three's a crowd: Can H₂S be the third endogenous gaseous transmitter? FASEB J. 2002, 16, 1792-1798.
- Szabo, C. Hydrogen sulfide and its therapeutic potential. Nat. Rev. Drug Discovery 2007, 917–935.
- Abe, K.; Kimura, H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 1996, 16, 1066-1071.
- Zhong, G.; Chen, F.; Cheng, Y.; Tang, C.; Du, J. The role of hydrogen sulfide generation in the pathogenesis of hypertension in rats induced by inhibition of nitric oxide synthase. J. Hypertens. **2003**, 21, 1879–1885.
- (5) Li, Li.; Bhatia, M.; Moore, P. K. Hydrogen sulfide:a novel mediator of inflammation? Curr. Opin. Pharmacol. 2006, 125-129.
- (6) Bhatia, M.; Wong, F. L.; Fu, D.; Lau, H. Y.; Moochhala, S. M.; Moore, P. K. Role of hydrogen sulfide in acute pancreatitis and associated lung injury. FASEB J. 2005, 19, 623-625.
- Bhatia, M.; Sidhapuriwala, J.; Moochhala, S. M.; Moore, P. K. Hydrogen sulfide is a mediator of carrageenan-induced hindpaw oedema in the rat. Br. J. Pharmacol. 2005, 145, 141-144
- Mok, Y. Y.; Atan, M. S.; Yoke Ping, C.; Zhong Jing, W.; Bhatia, M.; Moochhala, S.; Moore, P. K. Role of hydrogen sulfide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen sulfide biosynthesis. Br. J. Pharmacol. 2004, 143, 881-
- (9) Kawabata, A.; Ishiki, T.; Nagasawa, K.; Yoshida, S.; Maeda, Y.; Takahashi, T.; Sekiguchi, F.; Wada, T.; Ichida, S.; Nishikawa, H. Hydrogen sulfide as a novel nociceptive messenger. Pain 2007, 132, 74-81.
- (10) Fiorucci, S.; Distrutti, E.; Cirino, G.; Wallace, J. L. The emerging roles of hydrogen sulfide in the gastrontestinal tract and liver. Gastroenterology **2006**, 131, 259–271.
- (11) Ellis, A. J.; Giggenbach, W. Hydrogen sulfide ionization and sulfur hydrolysis in high temperature solution. Geochim. Cosmochim. Acta 1971, 35 (3), 247–260.
- (12) Giggenbach, W. Optical spectra of highly alkaline sulfide solutions and the second dissociation constant of hydrogen sulfide. Inorg. Chem. 1971, 10 (7), 1333-1338.
- (13) Myers, R. J. The new low value for the second dissociation constant for H2S: its history, its best value, and its impact on the teaching of sulfide equilibria. J. Chem. Educ. 1986, 63, 687-
- (14) Belardinelli, M. C.; Chabli, A.; Chadefaux-Vekemans, B.; Kamoun, P. Urinary sulfur compounds in Down syndrome. Clin. Chem. **2001**, 47, 1500–1501.
- (15) Levitt, M. D.; Furne, J.; Springfield, J.; Suarez, F.; DeMaster, E. Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa. J. Clin. Invest. 1999, 104, 1107-1114.

- (16) Picton, R.; Eggo, M. C.; Merrill, G. A.; Langman, M. J.; Singh, S. Mucosal protection against sulfide: importance of the enzyme rhodanese. Gut 2002, 50, 201-205.
- (17) Kurzban, G. P.; Chu, L; Ebersole, J. L.; Holt, S. C. Sulfhemoglobin formation in human erythrocytes by cystalysin, an L-cysteine desulfhydrase from Treponema denticola. Oral Microbiol. Immunol. 1999, 14, 153-164.
- (18) Beauchamp, R. O., Jr.; Bus, J. S.; Popp, J. A.; Boreiko, C. J.; Andjelkovich, D. A. A critical review of the literature on hydrogen sulfide toxicity. Crit. Rev. Toxicol. 1984, 13, 25-97.
- Reiffenstein, R. J.; Hulbert, W. C.; Roth, S. H. Toxicology of hydrogen sulfide. Annu. Rev. Pharmacol. Toxicol. 1992, 32, 109-134.
- (20) Kage, S.; Kashimura, S.; Ikeda, H.; Kudo, K.; Ikeda, N. Fatal and nonfatal poisoning by hydrogen sulfide at an industrial waste site. J. Forensic Sci. 2002, 47, 652–655.
- (21) Burnett, W. W.; King, E. G.; Grace, M.; Hall, W. F. Hydrogen sulfide poisoning: review of 5 years experience. Can. Med. Assoc. *J*. **1977**, *117*, 1277–1280.
- (22) Kage, S.; Nagata, T.; Kudo, K. Determination of polysulfides in blood by gas chromatography and gas chromatography-mass spectrometry. J. Chromatogr. 1991, 564, 163–169.
- (23) Zhao, W.; Zhang, J.; Lu, Y.; Wang, R. The vasorelaxant effect of H₂S as a novel endogenous gaseous K_{ATP} channel opener. EMBO *J.* **2001**, *20*, 6008–6016.
- (24) Chen, X.; Jhee, K. H.; Kruger, W. D. Production of the neuromodulator H₂S by cystathionine beta-synthase via the condensation of cysteine and homocysteine. J. Biol. Chem. 2004, 279 (50),
- (25) Meier, M.; Janosik, M.; Kery, V.; Kraus, J. P.; Burkhard, P. Structure of human cystathionine beta-synthase: a unique pyridoxal 5'-phosphate-dependent heme protein. EMBO J. 2001, 20, 3910-3916
- (26) Yap, S.; Naughten, E. R.; Wilcken, B.; Wilcken, D. E.; Boers, G. H. Vascular complications of severe hyperhomocysteinemia in patients with homocystinuria due to cystathionine beta-synthase deficiency: effects of homocysteine-lowering therapy. Semin. Thromb. Hemostasis 2000, 26, 335-340.
- (27) Levonen, A. L.; Lapatto, R.; Saksela, M.; Raivio, K. O. Human cystathionine γ -lyase: developmental and in vitro expression of two isoforms. Biochem. J. 2000, 347, 291-295.
- (28) Awata, S.; Nakayama, K.; Suzuki, I.; Sugahara, K.; Kodama, H. Changes in cystathionine γ -lyase in various regions of rat brain during development. Biochem. Mol. Biol. Int. 1995, 35, 1331-1338.
- (29) Hosoki, R.; Matsuki, N.; Kimura, H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Commun. 1997, 237, 527-
- (30) Boehning, D.; Snyder, S. H. Novel neural modulators. Annu. Rev. Neurosci. 2003, 26, 105-131.
- (a) Braunstein, A. E.; Azarkh, R. M. Phosphopyridoxal in aerobic deamination of homoserine and serine. Dokl. Akad. Nauk SSSR 1952, 85, 385-388. (b) Flavin, M.; Segal, A. Purification and properties of the cystathionine- γ -cleavage enzyme of Neurospora. J. Biol. Chem. 1964, 239, 2220-2227.
- (32) Braunstein, A. E.; Goryachenkova, E. V.; Tolosa, E. A.; Willhardt, I. H.; Yefremova, L. L. Specificity and some other properties of liver serine sulphhydrase: evidence for its identity with cystathionine-synthase. Biochim. Biophys. Acta 1971, 242, 247-260.
- Nakagawa, H.; Kimura, H. Purification and properties of cystathionine synthetase from rat liver: separation of cystathionine synthetase from serine dehydratase. Biochem. Biophys. Res. Commun. 1968, 32, 209-214.
- (34) Schlossmann, K.; Brueggemann, J.; Lynen, F. Biosynthesis of cysteine. I. Detection and isolation of serine sulfhydrase from baker's yeast. Biochem. Z. 1962, 336, 258-273.
- (35) Sun, Q.; Collins, R.; Huang, S.; Holmberg-Schiavone, L.; Anand, G. S.; Tan, C. H.; van-den-Berg, S.; Deng, L. W.; Moore, P. K.; Karlberg, T.; Sivaraman, J. Structural basis for the inhibition mechanism of human cystathionine gamma-lyase, an enzyme responsible for the production of H₂S. J. Biol. Chem. 2009, 284 (5), 3076-3085.
- (36) Skovby, F.; Kraus, J. P.; Rosenberg, L. E. Biosynthesis and proteolytic activation of cystathionine beta-synthase in rat liver. J. Biol. Chem. **1984**, 259, 588–593.
- (37) Kery, V.; Bukovska, G.; Kraus, J. P. Transsulfuration depends on heme in addition to pyridoxal 5'-phosphate. Cystathionine beta-synthase is a heme protein. J. Biol. Chem. 1994, 269, 25283-
- (38) Kery, V.; Poneleit, L.; Meyer, J. D.; Manning, M. C.; Kraus, J. P. Binding of pyridoxal 5'-phosphate to the heme protein human cystathionine beta-synthase. Biochemistry 1999, 38, 2716–2724.

- (39) Lucas, M.; Kortazar, D.; Astigarraga, E.; Fernandez, J. A.; Mato, J. M.; Martinez-Chantar, M. L.; Martinez-Cruz, L. A. Purification, crystallization and preliminary X-ray diffraction analysis of the CBS-domain pair from the Methanococcus jannaschii protein MJ0100. Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun. 2008, F64 (10), 936–941.
- (40) Martinez-Cruz, L. A.; Encinar, J. A.; Kortazar, D.; Prieto, J.; Gomez, J.; Fernandez-Millan, P.; Lucas, M.; Arribas, E. A.; Fernandez, J. A.; Martinez-Chantar, M. L.; Mato, J. M.; Neira, J. L. The CBS domain protein MJ0729 of Methanocaldococcus jamaschii is a thermostable protein with a pH-dependent self-oligomerization. Biochemistry 2009, 48 (12), 2760–2776.
- (41) Mustafa, A. K.; Gadalla, M. M.; Sen, N.; Kim, S.; Mu, W.; Gazi, S. K.; Barrow, R. K.; Yang, G.; Wang, R.; Snyder, S. H. H₂S signals through protein S-sulfhydration. *Sci Signaling* **2009**, 2 (96), ra72.
- (42) Cheng, Y.; Ndisang., J. F.; Tang, G.; Cao, K.; Wang, R. Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am. J. Physiol.: Heart Circ. Physiol. 2004, 287, H2316–H2323.
- (43) Zhao, W.; Wang, R. H₂S-induced vasorelaxation and underlying cellular and molecular mechanisms. *Am. J. Physiol.: Heart. Circ. Physiol.* 2002, 283, H474–H480.
- (44) Hosoki, R.; Matsuki, N.; Kimura, H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. *Biochem. Biophys. Res. Commun.* 1997, 237, 527– 531.
- (45) Busse, R.; Fleming, I. Nitric oxide, nitric oxide synthase, and hypertensive vascular disease. *Curr. Hypertens. Rep.* 1999, 1, 88– 95.
- (46) Yan, H.; Du, J. B.; Tang, C. S. Changes of endogenous hydrogen sulfide (H₂S) in hypertensive rats. *Zhonghua Erke Zazhi* 2004, 42, 172–175.
- (47) Zhao, X.; Zhang, L. K.; Zhang, C. Y.; Zeng, X. J.; Yan, H.; Jin, H. F.; Tang, C. S.; Du, J. B. Regulatory effect of hydrogen sulfide on vascular collagen content in spontaneously hypertensive rats. *Hypertens. Res.* 2008, 31, 1619–1630.
- (48) Zhao, W.; Ndisang, J. F.; Wang, R. Modulation of endogenous production of H₂S in rat tissues. *Can. J. Physiol. Pharmacol.* 2003, 81, 848–853.
- (49) Webb, G. D.; Lim, L. H.; Oh, V. M.; Yeo, S. B.; Cheong, Y. P.; Ali, M. Y.; El Oakley, R.; Lee, C. N.; Wong, P. S.; Caleb, M. G.; Salto-Tellez, M.; Bhatia, M.; Chan, E. S.; Taylor, E. A.; Moore, P. K. Contractile and vasorelaxant effects of hydrogen sulfide and its biosynthesis in the human internal mammari artery. J. Pharmacol. Exp. Ther. 2008, 324, 876–882.
- (50) Yang, G.; Wu, L.; Jiang, B.; Yang, W.; Qi, J.; Cao, K.; Meng, Q.; Mustafa, A. K.; Mu, W.; Zhang, S.; Snyder, S. H.; Wang, R. H₂S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. *Science* 2008, 322, 587–590.
- (51) Su, Y. W.; Liang, C.; Jin, H. F.; Tang, X. Y.; Han, W.; Chai, L. J.; Zhang, C. Y.; Geng, B.; Tang, C. S.; Du, J. B. Hydrogen sulfide regulates cardiac function and structure in adriamycin-induced cardiomyopathy. Circ. J. 2009, 73 (4), 741–749.
- (52) Li, X.; Jin, H.; Bin, G.; Wang, L.; Tang, C.; Du, J. Endogenous hydrogen sulfide regulates pulmonary artery collagen remodeling in rats with high pulmonary blood flow. *Exp. Biol. Med.* **2009**, 234 (5), 504–512.
- (53) Lowicka, E.; Beltowski, J. Hydrogen sulfide (H₂S)—the third gas of interest for pharmacologists. *Pharmacol. Rep.* 2007, 59, 4–24.
- (54) Wallace, J. L. Hydrogen sulfide-releasing anti-inflammatory drugs. Trends Pharmacol. Sci. 2007, 28, 501–505.
- (55) Li, L.; Hsu, A.; Moore, P. K. Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulfide in the cardiovascular system and in inflammation—a tale of three gases!. *Pharmacol. Ther.* 2009, 123 (3), 386–400.
- (56) Li, L.; Bhatia, M.; Zhu, Y. Z.; Zhu, Y. C.; Ramnath, R. D.; Wang, Z. J.; Anuar, F. B.; Whiteman, M.; Salto-Tellez, M.; Moore, P. K. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. *FASEB J.* 2005, 19 (9), 1196–1198.
- (57) Zhang, H.; Zhi, L.; Moochhala, S. M.; Moore, P. K.; Bhatia, M. Endogenous hydrogen sulfide regulates leukocyte trafficking in cecal ligation and puncture-induced sepsis. *J. Leukocyte Biol.* 2007, 82 (4), 894–905.
- (58) Trevisani, M.; Patacchini, R.; Nicoletti, P.; Gatti, R.; Gazzieri, D.; Lissi, N.; Zagli, G.; Creminon, C.; Geppetti, P.; Harrison, S. Hydrogen sulfide causes vanilloid receptor 1-mediated neurogenic inflammation in the airways. *Br. J. Pharmacol.* 2005, 145 (8), 1123–1131
- (59) Zhang, H.; Hegde, A.; Wei Ng, S.; Adhikari, S.; Moochhala, S. M.; Bhatia, M. Hydrogen sulfide up-regulates substance P in

- polymicrobial sepsis-associated lung injury. J. Immunol. 2007, 179, 4153–4160.
- (60) Collin, M.; Anuar, F. B.; Murch, O.; Bhatia, M.; Moore, P. K.; Thiemermann, C. Inhibition of endogenous hydrogen sulfide formation reduces the organ injury caused by endotoxemia. *Br. J. Pharmacol.* 2005, 146, 498–505.
- (61) Hui, Y; Du, J; Tang, C; Bin, G; Jiang, H. Changes in arterial H₂S content during septic shock and endotoxin shock in rats. *J. Infect.* 2003, 47 (2), 155–160.
- (62) Mok, Y. Y.; Moore, P. K. Hydrogen sulfide is pro-inflammatory in haemorrhagic shock. *Inflammation Res.* 2008, 57 (11), 512–518.
- (63) Zhi, L.; Ang, A. D.; Zhang, H.; Moore, P. K.; Bhatia, M. Hydrogen sulfide induces the synthesis of proinflammatory cytokines in human monocyte cell line U937 via the ERK-NF-kB pathway. J. Leukocyte Biol. 2007, 81, 1322–1332.
- (64) Lee, A. T.; Shah, J. J.; Li, L.; Cheng, Y.; Moore, P. K.; Khanna, S. A nociceptive-intensity-dependent role for hydrogen sulfide in the formalin model of persistent inflammatory pain. *Neuroscience* 2008, 152 (1), 89–96.
- (65) Zanardo, R. C.; Brancaleone, V.; Distrutti, E.; Fiorucci, S.; Cirino, G.; Wallace, J. L. Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J. 2006, 20 (12), 2118–2120.
- (66) Tamizhselvi, R.; Sun, J.; Koh, Y. H.; Bhatia, M. Effect of hydrogen sulfide on PI3K-AKT pathway and on caerulein- induced cytokine production in isolated mouse pancreatic acinar cells. J. Pharmacol. Exp. Ther. 2009, 329 (3), 1166–1177.
- (67) Esechie, A.; Kiss, L.; Olah, G.; Horváth, E. M.; Hawkins, H.; Szabo, C.; Traber, D. L. Protective effect of hydrogen sulfide in a murine model of acute lung injury induced by combined burn and smoke inhalation. *Clin. Sci.* 2008, 115 (3), 91–97.
 (68) Wallace, J. L.; Dicay, M.; McKnight, W.; Martin, G. R. Hydro-
- (68) Wallace, J. L.; Dicay, M.; McKnight, W.; Martin, G. R. Hydrogen sulfide enhances ulcer healing in rats. FASEB J. 2007, 21, 4070–4076.
- (69) Hu, L. F.; Wong, P. T.; Moore, P. K.; Bian, J. S. Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen activated protein kinase in microglia. *J. Neurochem.* 2006, 100 (4), 1121–1128.
- (70) Jin, H. F.; Liang, C.; Liang, J. M.; Tang, C. S.; DU, J. B. Effects of hydrogen sulfide on vascular inflammation in pulmonary hypertension induced by high pulmonary blood flow: experiment with rats. *Zhonghua Yixue Zazhi* 2008, 88 (32), 2235–2239.
- (71) Sivarajah, A.; Collino, M.; Yasin, M.; Benetti, E.; Gallicchio, M.; Mazzon, E.; Cuzzocrea, S.; Fantozzi, R.; Thiemermann, C. Antiapoptotic and anti-inflammatory effects of hydrogen sulfide in a rat model of regional myocardial I/R. Shock 2009, 31 (3), 267–274.
- (72) Oh, G. S.; Pae, H. O.; Lee, B. S.; Kim, B. N.; Kim, J. M.; Kim, H. R.; Jeon, S. B.; Jeon, W. K.; Chae, H. J.; Chung, H. T. Hydrogen sulfide inhibits nitric oxide production and nuclear factor-κB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radical Biol. Med. 2006, 41, 106–119.
- (73) Sodha, N. R.; Clements, R. T.; Feng, J.; Liu, Y.; Bianchi, C.; Horvath, E. M.; Szabo, C.; Stahl, G. L.; Sellke, F. W. Hydrogen sulfide therapy attenuates the inflammatory response in a porcine model of myocardial ischemia/reperfusion injury. *J. Thorac.* Cardiovasc. Surg. 2009, 138 (4), 977–984.
- (74) Wallace, J. L.; Vong, L.; McKnight, W.; Dicay, M.; Martin, G. R. Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. *Gastroenterology* 2009, 137 (2), 569–578.
- (75) Abe, K.; Kimura, H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 1996, 16 (3), 1066– 1071.
- (76) Kimura, H. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. *Biochem. Biophys. Res. Commun.* 2000, 267 (1), 129–133
- (77) Qu, K.; Chen, C. P.; Halliwell, B.; Moore, P. K.; Wong, P. T. Hydrogen sulfide is a mediator of cerebral ischemic damage. *Stroke* 2006, 37, 889–893.
- (78) Beyer, K.; Lao, J. I.; Carrato, C.; Rodriguez-Vila, A.; Latorre, P.; Mataró, M.; Llopis, M. A.; Mate, J. L.; Ariza, A. Cystathionine beta synthase as a risk factor for Alzheimer disease. *Curr. Alzheimer Res.* 2004, 1, 127–133.
- (79) Qu, K.; Lee, S. W.; Bian, J. S.; Low, C. M.; Wong, P. T. H. Hydrogen sulfide: neurochemistry and neurobiology. *Neurochem. Int.* 2008, 52, 155–165.
- (80) Han, Y.; Qin, J.; Chang, X.; Yang, Z.; Bu, D.; Du, J. Modulating effect of hydrogen sulfide on gamma-aminobutirric acid B receptor in recurrent febrile seizures in rats. *Neurosci Res.* 2005, 53 (2), 216–219.
- (81) Wu, C. C.; Lii, C. K.; Tsai, S. J.; Sheen, L. Y. Diallyl trisulfide modulates cell viability and the antioxidation and detoxification

- systems of rat primary hepatocytes. J. Nutr. 2004, 134 (4), 724-
- (82) Whiteman, M.; Cheung, N. S.; Zhu, Y. Z.; Chu, S. H.; Siau, J. L.; Wong, B. S.; Armstrong, J. S.; Moore, P. K. Hydrogen sulfide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem. Biophys. Res. Commun. 2005, 326 (4), 794-
- (83) Kimura, Y.; Dargusch, R.; Schubert, D.; Kimura, H. hydrogen sulfide protects HT22 neuronal cells form oxidative stress. Antioxid. Redox Signaling 2006, 8 (3-4), 661-670.
- (84) Tyagi, N.; Moshal, K. S.; Sen, U.; Vacek, T. P.; Kumar, M.; Hughes, W. M.; Kundu, S.; Tyagi, S. C. H₂S protects against methionine-induced oxidative stress in brain endothelial cells. Antioxid. Redox Signaling 2009, 11 (1), 25-33.
- (85) Koehler, R. C.; Gebremedhin, D.; Harder, D. R. Role of astrocytes in cerebrovascular regulation. J. Appl. Physiol. 2006, 100 (1), 307-317.
- (86) Farber, K.; Kettenmann, H. Physiology of microglial cells. Brain Res. Rev. 2005, 48 (2), 133-143.
- (87) (a) Wojtera, M.; Sikorska, B.; Sobow, T.; Liberski, P. P. Microglial cells in neurodegenerative disorders. Folia Neuropathol. 2005, 43 (4), 311-321. (b) Kim, Y. S.; Joh, T. H. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson's disease. Exp. Mol. Med. 2006, 38 (4), 333–347.
- (88) Nagai, Y.; Tsugane, M.; Oka, J.; Kimura, H. Hydrogen sulfide induces calcium waves in astrocytes. FASEB J. 2004, 18, 557-559.
- Lee, S. W.; Hu, Y. S.; Hu, L. F.; Lu, Q.; Dawe, G. S.; Moore, P. K.; Wong, P. T.; Bian, J. S. Hydrogen sulfide regulates calcium homeostasis in microglial cells. Glia 2006, 54 (2), 116-124.
- (90) Lingyun, W.; Wei, Y.; Xuming, J.; Guangdong, Y.; Dessislava, D.; Kun, C.; Rui, W. Pancreatic islet overproduction of H₂S and suppressed insulin release in Zucker diabetic rats. Lab. Invest. **2009**, 89, 59-67.
- (91) Yukiko, K.; Toshihide, K.; Shigeki, T.; Midori, S.; Yumiko, K.; Yuka, K.; Hideo, K.; Ichiro, N. Glucose-induced production of hydrogen sulfide may protect the pancreatic beta-cells from apoptotic cell death by high glucose. FEBS Lett. 2009, 583, 377-
- (92) Yang, G.; Yang, W.; Wu, L.; Wang, R. H2S, endoplasmic reticulum stress, and apoptosis of insulin-secreting beta cells. J. Biol. Chem. 2007, 282 (22), 16567–16576.
- (93) Perry, S. F.; McNeill, B.; Elia, E.; Nagpal, A.; Vulesevic, B. Hydrogen sulfide stimulates catecholamine secretion in rainbow trout (Oncorhynchus mykiss). Am. J. Physiol.: Regul., Integr. Comp. Physiol. 2009, 296 (1), R133-R140.
- (94) Dello Russo, C.; Tringali, G.; Ragazzoni, E.; Maggiano, N.; Menini, E.; Vairano, M.; Preziosi, P.; Navarra, P. Evidence that hydrogen sulfide can modulate hypothalamo-pituitary-adrenal axis function: in vitro and in vivo studies in the rat. J. Neuroendocrinol. 2000, 12, 225-233.
- (95) (a) Wallace, J. L.; Caliendo, G.; Santagada, V.; Cirino, G.; Fiorucci, S. Gastrointestinal safety and anti-inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat. Gastroenterology 2007, 132, 261-271. (b) Fiorucci, S.; Santucci, L.; Distrutti, E. NSAIDs, coxibs, CINOD and H2S-releasing NSAIDs: What lies beyond the horizon. Dig. Liver Dis. 2007, 39, 1043–1051. (c) Wallace, J. L.; Vong, L. NSAID-induced gastrointestinal damage and the design of GI-sparing NSAIDs. Curr. Opin. Invest. Drugs **2008**, 9 (11), 1151–1156.
- (96) Wallace, J. L. Building a better aspirin: gaseous solutions to a century-old problem. Br. J. Pharmacol. 2007, 152 (4), 421–428.
- (97) Gallego, D.; Clavé, P.; Donovan, J.; Rahmati, R.; Grundy, D.; Jiménez, M.; Beyak, M. J. The gaseous mediator, hydrogen sulfide, inhibits in vitro motor patterns in the human, rat and mouse colon and jejunum. Neurogastroenterol. Motil. 2008, 20, 1306-1316.
- (98) Yusof, M.; Kamada, K.; Kalogeris, T.; Gaskin, F. S.; Korthuis, R. J. Hydrogen sulfide triggers late-phase preconditioning in postischemic small intestine by an NO- and p38 MAPK-dependent mechanism. Am. J. Physiol.: Heart Circ. Physiol. 2009, 296 (3), H868-876.
- (99) Srebro, Z.; Somogyi, E.; Wiliński, B.; Góralska, M.; Wiliński, J.; Sura, P. Aspirin augments the concentration of endogenous hydrogen sulfide in mouse brain and liver. Folia Med. Cracov. **2006**, 47 (1-4), 87-91.
- (100) Distrutti, E.; Mencarelli, A.; Santucci, L.; Renga, B.; Orlandi, S.; Donini, A.; Shah, V.; Fiorucci, S. The methionine connection: homocysteine and hydrogen sulfide exert opposite effects on hepatic microcirculation in rats. Hepatology 2008, 47, 659-667.
- (101) Jha, S.; Calvert, J. W.; Duranski, M. R.; Ramachandran, A.; Lefer, D. J. Hydrogen sulfide attenuates hepatic ischemia-reperfusion

- injury: role of antioxidant and antiapoptotic signaling. Am. J. Physiol.: Heart Circ. Physiol. **2008**, 295 (2), H801–H806.
- (102) Zhang, H.; Moochhala, S. M.; Bhatia, M. Endogenous hydrogen sulfide regulates inflammatory response by activating the ERK pathway in polymicrobial sepsis. J. Immunol. 2008, 181 (6), 4320-4331.
- (103) Siebert, N.; Cantré, D.; Eipel, C.; Vollmar, B. H₂S contributes to the hepatic arterial buffer response and mediates vasorelaxation of the hepatic artery via activation of K(ATP) channels. Am. J. Physiol.: Gastrointest. Liver Physiol. 2008, 295 (6), G1266–1273.
- (104) Picton, R.; Eggo, M. C.; Langman, M. J. S.; Singh, S. Impaired detoxication of hydrogen sulfide in ulcerative colitis? Dig. Dis. Sci. **2007**, *52*, 373–378.
- (105) Fiorucci, S.; Orlandi, S.; Mencarelli, A.; Caliendo, G.; Santagada, V.; Distrutti, E.; Santucci, L.; Cirino, G.; Wallace, J. L. Enhanced activity of a hydrogen sulfide releasing derivative of mesalamine (ATB-429) in a mouse model of colitis. Br. J. Pharmacol. 2007, 150, 996–1002.
- (106) Tamizhselvi, R.; Moore, P. K.; Bhatia, M. Hydrogen sulfide acts as a mediator of inflammation in acute pancreatitis; in vitro studies using isolated mouse pancreatic acinar cells. J. Cell. Mol. Med. 2007, 11 (2), 315-326.
- Yonezawa, D.; Sekiguchi, F.; Miyamoto, M.; Taniguchi, E.; Honjo, M.; Masuko, T.; Nishikawa, H.; Kawabata, A. A protective role of hydrogen sulfide against oxidative stress in rat gastric mucosal epithelium. Toxicology 2007, 241, 11-18.
- (108) Distrutti, E.; Sediari, L.; Mencarelli, A.; Renga, B.; Orlandi, S.; Russo, G.; Caliendo, G.; Santagada, V.; Cirino, G.; Wallace, J. L.; Fiorucci, S. 5-Amino-2-hydroxybenzoic acid 4-(5-thioxo-5H-[1,2]dithiol-3yl)-phenyl ester (ATB-429), a hydrogen sulfidereleasing derivative of mesalamine, exerts antinociceptive effects in a model of postinflammatory hypersensitivity. J. Pharmacol. Exp. Ther. **2006**, 319 (1), 447–458.
- (109) Nishimura, S.; Fukushima, O.; Ishikura, H.; Takahashi, T.; Matsunami, M.; Tsujiuchi, T.; Sekiguchi, F.; Naruse, M.; Kamanaka, Y.; Kawabata, A. Hydrogen sulfide as a novel mediator for pancreatic pain in rodents. Gut 2009, 58 (6), 762-770.
- (110) Martin, G. R.; McKnight, G. W.; Dicay, M. S.; Coffin, C. S.; Ferraz, J. G.; Wallace, J. L. Hydrogen sulfide synthesis in the rat and mouse gastrointestinal tract. Dig. Liver Dis. 2010, 42, 103-
- (111) Zhao, P.; Huang, X.; Wang, Z. Y.; Qiu, Z. X.; Han, Y. F.; Lu, H. L.; Kim, Y. C.; Xu, W. X. Dual effect of exogenous hydrogen sulfide on the spontaneous contraction of gastric smooth muscle in guinea-pig. Eur. J. Pharmacol. 2009, 616 (1-3), 223-228
- (112) Li, L.; Whiteman, M.; Guan, Y. Y.; Neo, K. L.; Cheng, Y.; Lee, S. W.; Zhao, Y.; Baskar, R.; Tan, C.-H.; Moore, P. K. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137). New insights into the biology of hydrogen sulfide. Circulation 2008, 117 (18), 2351-2360.
- (113) Medeiros, J. V.; Bezerra, V. H.; Gomes, A. S.; Barbosa, A. L.; Lima-Júnior, R. C.; Soares, P. M.; Brito, G. A.; Ribeiro, R. A.; Cunha, F. Q.; Souza, M. H. Hydrogen sulfide prevents ethanolinduced gastric damage in mice: role of ATP-sensitive potassium channels and capsaicin-sensitive primary afferent neurons. J. Pharmacol. Exp. Ther. **2009**, 330 (3), 764–770.
- (114) Rosenthal, D.; Taylor, T. I. Mechanism and kinetics of the thioacetamide hydrolysis reaction. J. Am. Chem. Soc. 1957, 79, 2684-2690
- (115) Bottcher, B. Trithiones, III. Chem. Ber. 1948, 81, 376-377.
- (116) Scholz, M.; Ulbrich; Soehnlein, O.; Lindbom, L.; Mattern, A.; Dannhardt, G. Diaryl-dithiolanes and -isothiazoles: COX-1/ COX-2 and 5-LOX-inhibitory, OH scavenging and anti-adhesive activities. Bioorg. Med. Chem. 2009, 17 (2), 558-568.
- (117) Carroll, F. I.; Smith, D.; Mark, L. C.; Brand, L.; Perel, J. M. Determination of optically active thiopental, thiamylal, and their metabolites in human urine. Drug Metab. Dispos. 1977, 5, 343-354.
- (118) Insko, M. A.; Deckwerth, T. L.; Hill, P.; Toombs, C. F.; Szabo, C. Detection of exhaled hydrogen sulfide gas in rats exposed to intravenous sodium sulfide. Br. J. Pharmacol. 2009, 157 (6), 944-951
- (119) Pyiochou, A.; Papapetropoulos, A.; Olah, G.; Wintner, E.; Jeschke, M.; Branski, L.; Herndon, D.; Traber, D.; Szabo, C. The hydrogen sulfide donor IK-1001 stimulates neovascularization and improves wound healing. FASEB J. 2008, 22, 912-942.
- (120) Shukla, N; Rossoni, G; Hotston, M; Sparatore, A; Del Soldato, P; Tazzari, V; Persad, R; Angelini, G. D.; Jeremy, J. Y. Effect of hydrogen sulfide-donating sildenafil (ACS6) on erectile function and oxidative stress in rabbit isolated corpus cavernosum and in hypertensive rats. BJU Int. 2009, 103 (11), 1522-1529.

- (121) d'Emmanuele de Villa Bianca, R.; Sorrentino, R.; Maffia, P.; Mirone, V.; Imbimbo, C.; Fusco, F.; De Palma, R.; Ignarro; Cirino, G. Hydrogen sulfide as a mediator of human corpus cavernosum smooth-muscle relaxation. *Proc. Natl. Acad. Sci. U.S.A.* **2009**, *106* (11), 4513–4518.
- (122) Fiorucci, S.; Antonelli, E.; Distrutti, E.; Rizzo, G.; Mencarelli, A.; Orlandi, S.; Zanardo, R.; Renga, B.; Di Sante, M.; Morelli, A.; Cirino, G.; Wallace, J. L. Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs. *Gastroenterology* 2005, 129, 1210–1224.
- (123) Baskar, R.; Sparatore, A.; Del Soldato, P.; Moore, P. K. Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative inhibit rat vascular smooth muscle cell proliferation. Eur. J. Pharmacol. 2008, 594, 1–8.
- (124) Li, L.; Rossoni, G.; Sparatore, A.; Lee, L. C.; Del Soldato, P.; Moore, P. K. Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radical Biol. Med. 2007, 42 (5), 706–719.
- (125) Wallace; Caliendo, G.; Santagada, V.; Cirino, G. Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346). *Br. J. Pharmacol.* **2010**, *159* (6), 1236–1246.